Bundling van Etten 2002 to a DwC Archive
This is an R Markdown Notebook for converting the species checklist found in the following reference to DarwinCore format for upload into OBIS as part of UNESCO’s eDNA Expeditions project:
Etten, J.P.C van (2002) Bane d’Arguin a Nursery for fish species. Master’s Thesis / Essay, Biology.
Setup
Call the necessary libraries and variables. Suppresses loading messages.
library(magrittr) # To use %<>% pipes
suppressMessages(library(janitor)) # To clean input data
suppressMessages(library(dplyr)) # To clean input data
library(stringr) # To clean input data
suppressMessages(library(rgnparser)) # To clean species names
suppressMessages(library(taxize)) # To get WoRMS IDs
library(worrms) # To get WoRMS IDs
library(digest) # To generate hashes
suppressMessages(library(obistools)) # To generate centroid lat/long and uncertainty
suppressMessages(library(sf)) # To generate wkt polygon
suppressMessages(library(EML)) # To create eml.xml file
library(xml2) # To create the meta.xml file
suppressMessages(library(zip)) # To zip DwC file
Input Parameters and Paths
Parsing PDF table to CSV
The data for this reference is formatted as an image-based table inside a PDF across multiple sheets. First, we use pdf_to_table to OCR and parse out the table to a CSV.
#conda environment
condaenv <- "mwhs-data-mobilization"
# Path to the Python script
script <- paste(path_to_project_root, "scripts_data/pdf_to_tables/pdf_to_table.py", sep="/")
# Input PDF file path
input_pdf <- paste(path_to_project_root, "datasets", site_dir_name, dataset_dir_name, "raw", original_pdf, sep="/")
# Output directory for OCR/table files
output_dir <- paste(path_to_project_root, "datasets", site_dir_name, dataset_dir_name, "processed", sep="/")
# Define page numbers and table areas (see documentation)
page_args <- c(
"-a 464.354,96.626,720.199,386.897 -p 10"
)
# Define run parameters (see documentation)
run_parameters <- "-s -nh"
# Combine page arguments and execute
page_args_combined <- paste(page_args, collapse = " ")
command <- paste("conda run -n", condaenv, "python", script, "-i", input_pdf, run_parameters, page_args_combined, "-o", output_dir)
system(command, intern=TRUE)
## [1] ""
## [2] "Script Execution Summary"
## [3] "Date and Time: 2023-10-03 16:04:08"
## [4] "------------------------------"
## [5] ""
## [6] "PDF input: ../../../datasets/banc_darguin_national_park/van_Etten_2002/raw/Biol_Msc_2002_JPCvanEtten.CV.pdf"
## [7] "Perform Table Parsing: TRUE"
## [8] "Selected Areas:"
## [9] " Area 1: [464.354, 96.626, 720.199, 386.897]"
## [10] "Pages: 10"
## [11] "Concatenate: False"
## [12] "Concatenate across headers: True"
## [13] "Stream Extraction: True"
## [14] "Lattice Extraction: False"
## [15] ""
## [16] "Parsing Tables"
## [17] "------------------------------"
## [18] ""
## [19] ""
## [20] "Saving to CSV"
## [21] "CSV file(s):"
## [22] "\t../../../datasets/banc_darguin_national_park/van_Etten_2002/processed/Biol_Msc_2002_JPCvanEtten.CV_tables_parsed_1.csv"
## [23] "------------------------------"
## [24] ""
## [25] ""
## [26] "Run Details: ../../../datasets/banc_darguin_national_park/van_Etten_2002/processed/Biol_Msc_2002_JPCvanEtten.CV_parameters.txt"
## [27] "Finished"
## [28] ""
Read source data
Now we’ll read in the csv table outputted from the previous step
processed_csv <- "Biol_Msc_2002_JPCvanEtten.CV_tables_parsed_1.csv"
input_data <- read.csv(paste(path_to_project_root, "datasets", site_dir_name, dataset_dir_name, "processed", processed_csv, sep="/"), header = FALSE)
#to preview pretty table
knitr::kable(head(input_data))
V1 | V2 | V3 |
---|---|---|
Anus Iatisculatus | Unnamed: 1 | 0.000 |
Athennasp. | 0021 | 0.013 |
Bathysolea p0111 | 0 000 | 0.000 |
Boops boops | 0 001 | |
Dicentrarchus punctatus | 0.001 | 0.00 |
DvIodussa,gus | 0.014 | 0.014 |
Preprocessing
Here we tidy the data up, since OCR and table parsing errors are common and only take the list of species, since this is a checklist.
Tidy Data
names(input_data) <- c("sciname", "A", "F")
input_data[1, 2] <- ""
input_data[14, 3] <- ""
# Remove Classes, Families and Orders and take first column only
cleaned_data <- input_data
#to preview pretty table
knitr::kable(head(cleaned_data))
sciname | A | F |
---|---|---|
Anus Iatisculatus | 0.000 | |
Athennasp. | 0021 | 0.013 |
Bathysolea p0111 | 0 000 | 0.000 |
Boops boops | 0 001 | |
Dicentrarchus punctatus | 0.001 | 0.00 |
DvIodussa,gus | 0.014 | 0.014 |
Get WoRMS IDs
Auto matching
First we will try to do this automatically by first cleaning the species names using gnparser and then using the taxise library to call the WoRMS database.
#Parse author names out
parsed_names <- rgnparser::gn_parse(cleaned_data[,1])
#Function to get WoRMS IDs. Search for accepted names first and if not found, search for unaccepted. If still not found, use the worrms package to search.
get_worms_id_from_element <- function(element) {
worms_id <- get_wormsid(element$canonical$full, searchtype="scientific", fuzzy=TRUE, messages = FALSE, accepted = TRUE)
if (attr(worms_id, "match") == "not found") {
worms_id <- get_wormsid(element$canonical$full, searchtype="scientific", messages = FALSE, fuzzy=TRUE)
if (attr(worms_id, "match") == "not found") {
worms_id <- NA
}
}
return(worms_id)
}
#Call the function
worms_ids <- lapply(parsed_names, function(element) {
if (element$parsed) {
return(get_worms_id_from_element(element))
} else {
return(NA)
}
})
##
## id target authority
## 1 315777 Tilapia aequatorialis Roman, 1971
## 2 315778 Tilapia affinis Duméril, 1861
## 3 315779 Tilapia amphimelas Hilgendorf, 1905
## 4 405482 Tilapia andersoni (Castelnau, 1861)
## 5 315780 Tilapia andersonii (Castelnau, 1861)
## 6 315781 Tilapia angolensis Thys van den Audenaerde, 1969
## 7 315782 Tilapia arnoldi Gilchrist & Thompson, 1917
## 8 1531221 Tilapia athiensis (Boulenger, 1916)
## 9 315783 Tilapia aurea (Steindachner, 1864)
## 10 1016990 Tilapia borkuana Pellegrin, 1919
## 11 1018764 Tilapia boulengeri Pellegrin, 1903
## 12 315784 Tilapia browni Nichols, 1923
## 13 405520 Tilapia caeruleomaculatus (Rochebrune, 1880)
## 14 315785 Tilapia calciati Gianferrari, 1924
## 15 315786 Tilapia cancellata Nichols, 1923
## 16 315787 Tilapia christyi Boulenger, 1915
## 17 1529182 Tilapia crassispina Arambourg, 1948
## 18 315789 Tilapia druryi Gilchrist & Thompson, 1917
## 19 315790 Tilapia dubia Lönnberg, 1904
## 20 405499 Tilapia dumerili (Steindachner, 1864)
## 21 315791 Tilapia dumerilii (Steindachner, 1864)
## 22 1017654 Tilapia eduardiana Boulenger, 1912
## 23 1620002 Tilapia esduardiana Boulenger, 1912
## 24 405522 Tilapia faidherbi (Rochebrune, 1880)
## 25 315792 Tilapia galilaea (Linnaeus, 1758)
## 26 1626622 Tilapia galilaea borkuana Pellegrin, 1919
## 27 1626623 Tilapia galilaea boulengeri Pellegrin, 1903
## 28 1626904 Tilapia galilaea multifasciata (Günther, 1903)
## 29 315793 Tilapia gefuensis Thys van den Audenaerde, 1964
## 30 315794 Tilapia grandidieri (Sauvage, 1882)
## 31 282977 Tilapia guineensis (Bleeker, 1863)
## 32 367733 Tilapia guineensis (Günther, 1862)
## 33 405509 Tilapia guinensis (Günther, 1862)
## 34 405508 Tilapia heudeloti Duméril, 1861
## 35 315795 Tilapia heudelotii Duméril, 1861
## 36 315796 Tilapia hornorum Trewavas, 1966
## 37 1015667 Tilapia inducta Trewavas, 1933
## 38 315798 Tilapia kafuensis Boulenger, 1912
## 39 315799 Tilapia kashabi Elster, 1958
## 40 315800 Tilapia kirkhami Gilchrist & Thompson, 1917
## 41 315801 Tilapia korogwe (Lowe, 1955)
## 42 315802 Tilapia lata (Günther, 1862)
## 43 315803 Tilapia lateralis Duméril, 1861
## 44 315804 Tilapia latifrons Boulenger, 1906
## 45 315805 Tilapia lemassoni Blache & Miton, 1960
## 46 315806 Tilapia leonensis Thys van den Audenaerde, 1971
## 47 1048608 Tilapia louka Thys van den Audenaerde, 1969
## 48 315808 Tilapia mackeani Gilchrist & Thompson, 1917
## 49 315809 Tilapia macrocentra Duméril, 1861
## 50 315810 Tilapia macrocephala (Bleeker, 1862)
## 51 315810 Tilapia macrocephala (Bleeker, 1862)
## 52 315811 Tilapia madagascariensis (Liénard, 1891)
## 53 315812 Tilapia manyarae Hilgendorf, 1905
## 54 282978 Tilapia mariae Boulenger, 1899
## 55 315813 Tilapia meeki Pellegrin, 1911
## 56 315814 Tilapia melanopleura Duméril, 1861
## 57 315815 Tilapia melanotheron (Rüppell, 1852)
## 58 315817 Tilapia microcephala (Günther, 1862)
## 59 315818 Tilapia microstoma (Lortet, 1883)
## 60 315819 Tilapia monodi Daget, 1954
## 61 405491 Tilapia mosambica (Peters, 1852)
## 62 315820 Tilapia mossambica (Peters, 1852)
## 63 324268 Tilapia mossambica korogwe Lowe, 1955
## 64 315821 Tilapia mossambicus (Peters, 1852)
## 65 405498 Tilapia mozambique (Peters, 1852)
## 66 323880 Tilapia multifasciata macrostoma Pellegrin, 1941
## 67 1622281 Tilapia multifasciatus (Günther, 1903)
## 68 1627261 Tilapia nigra nigra (Günther, 1894)
## 69 315824 Tilapia nigripinnis Guichenot, 1861
## 70 315825 Tilapia nilotica (Linnaeus, 1758)
## 71 1626075 Tilapia nilotica athiensis Boulenger, 1916
## 72 324270 Tilapia nilotica cancellata Nichols, 1923
## 73 1626612 Tilapia nilotica eduardiana Boulenger, 1912
## 74 1626613 Tilapia nilotica regani Poll, 1932
## 75 405501 Tilapia nilotious (Linnaeus, 1758)
## 76 315826 Tilapia nyirica Lönnberg, 1911
## 77 315827 Tilapia oligacanthus Bleeker, 1868
## 78 1017494 Tilapia percivali Boulenger, 1912
## 79 1619970 Tilapia placida Trewavas, 1941
## 80 315829 Tilapia pleuromelas Duméril, 1861
## 81 315830 Tilapia polycentra Duméril, 1861
## 82 315831 Tilapia rangii Duméril, 1861
## 83 1015754 Tilapia regani Poll, 1932
## 84 282979 Tilapia rendalli (Boulenger, 1897)
## 85 315832 Tilapia ruvumae Trewavas, 1966
## 86 1010624 Tilapia sanagaensis Thys van den Audenaerde, 1966
## 87 315834 Tilapia shariensis Fowler, 1949
## 88 324273 Tilapia shirana chilwae Trewavas, 1966
## 89 1626906 Tilapia spilurus nigra (Günther, 1894)
## 90 315836 Tilapia swierstrae Gilchrist & Thompson, 1917
## 91 315837 Tilapia sykesii Gilchrist & Thompson, 1917
## 92 315839 Tilapia tristrami (Günther, 1860)
## 93 315840 Tilapia urolepis Norman, 1922
## 94 1015679 Tilapia vulcani Trewavas, 1933
## 95 1620043 Tilapia zilii (Gervais, 1848)
## 96 405516 Tilapia zillei (Gervais, 1848)
## 97 405519 Tilapia zilli (Gervais, 1848)
## 98 282980 Tilapia zillii (Gervais, 1848)
## 99 323689 Tilapia zillii guineensis (Günther, 1862)
## status
## 1 unaccepted
## 2 unaccepted
## 3 unaccepted
## 4 unaccepted
## 5 unaccepted
## 6 unaccepted
## 7 unaccepted
## 8 unaccepted
## 9 unaccepted
## 10 unaccepted
## 11 unaccepted
## 12 unaccepted
## 13 unaccepted
## 14 unaccepted
## 15 unaccepted
## 16 unaccepted
## 17 unaccepted
## 18 unaccepted
## 19 unaccepted
## 20 unaccepted
## 21 unaccepted
## 22 unaccepted
## 23 misspelling
## 24 unaccepted
## 25 unaccepted
## 26 unaccepted
## 27 unaccepted
## 28 unaccepted
## 29 unaccepted
## 30 unaccepted
## 31 unaccepted
## 32 unaccepted
## 33 unaccepted
## 34 unaccepted
## 35 unaccepted
## 36 unaccepted
## 37 unaccepted
## 38 unaccepted
## 39 unaccepted
## 40 unaccepted
## 41 unaccepted
## 42 unaccepted
## 43 unaccepted
## 44 unaccepted
## 45 unaccepted
## 46 unaccepted
## 47 unaccepted
## 48 unaccepted
## 49 unaccepted
## 50 unaccepted
## 51 unaccepted
## 52 unaccepted
## 53 unaccepted
## 54 unaccepted
## 55 unaccepted
## 56 unaccepted
## 57 unaccepted
## 58 unaccepted
## 59 unaccepted
## 60 unaccepted
## 61 unaccepted
## 62 unaccepted
## 63 unaccepted
## 64 unaccepted
## 65 unaccepted
## 66 unaccepted
## 67 unaccepted
## 68 unaccepted
## 69 unaccepted
## 70 unaccepted
## 71 unaccepted
## 72 unaccepted
## 73 unaccepted
## 74 unaccepted
## 75 unaccepted
## 76 unaccepted
## 77 unaccepted
## 78 unaccepted
## 79 unaccepted
## 80 unaccepted
## 81 unaccepted
## 82 unaccepted
## 83 unaccepted
## 84 unaccepted
## 85 unaccepted
## 86 unaccepted
## 87 unaccepted
## 88 unaccepted
## 89 unaccepted
## 90 unaccepted
## 91 unaccepted
## 92 unaccepted
## 93 unaccepted
## 94 unaccepted
## 95 misspelling
## 96 unaccepted
## 97 unaccepted
## 98 unaccepted
## 99 unaccepted
##
## More than one WORMS ID found for taxon 'Tilapia'!
##
## Enter rownumber of taxon (other inputs will return 'NA'):
#combine original names, parsed data and WoRMS ID into one data frame
combined_dataframe <- data.frame()
for (i in 1:nrow(cleaned_data)) {
cleaned_value <- cleaned_data[i,]
canonical_value <- parsed_names[[i]]$canonical$full
worms_id_value <- worms_ids[[i]][1]
if (is.null(canonical_value)){
canonical_value <- NA
}
temp_row <- data.frame(CleanedData = cleaned_value, CanonicalFull = canonical_value, WormsIDs = worms_id_value)
combined_dataframe <- rbind(combined_dataframe, temp_row)
}
knitr::kable(head(combined_dataframe))
CleanedData.sciname | CleanedData.A | CleanedData.F | CanonicalFull | WormsIDs |
---|---|---|---|---|
Anus Iatisculatus | 0.000 | Anus | NA | |
Athennasp. | 0021 | 0.013 | NA | NA |
Bathysolea p0111 | 0 000 | 0.000 | Bathysolea | 126126 |
Boops boops | 0 001 | Boops boops | 127047 | |
Dicentrarchus punctatus | 0.001 | 0.00 | Dicentrarchus punctatus | 126976 |
DvIodussa,gus | 0.014 | 0.014 | NA | NA |
Human Verification
Sometimes there are misspellings in the original text or incorrect OCR that can be searched for and fixed by hand. To do this, view the combined dataframe, search for unmatched species in WoRMS and add the ID, and remove rows that were not autoremoved in the earlier cleaning steps
combined_dataframe[1,4:5] = c("Arius latiscutatus", 275576)
combined_dataframe[2,4:5] = c("Atherina", 125659)
combined_dataframe[3,4:5] = c("Bathysolea polli", 274297)
combined_dataframe[6,4:5] = c("Diplodus sargus", 127053)
combined_dataframe[7,4:5] = c("Ephippion guttiferum", 403504)
combined_dataframe[8,4:5] = c("Epinephelus aeneus", 127032)
combined_dataframe[9,4:5] = c("Ethmalosa fimbriata", 280725)
combined_dataframe[10,4:5] = c("Gobius microps", 151516)
combined_dataframe[12,4:5] = c("Hippocampus hippocampus", 127380)
combined_dataframe[13,4:5] = c("Liza falcipinnis", 273639)
combined_dataframe[14,4:5] = c("Loligo", 138139)
combined_dataframe[15,4:5] = c("Mugil cephalus", 126983)
combined_dataframe[16,4:5] = c("Eucinostomus melanopterus", 276423)
combined_dataframe[17,4:5] = c("Sardinella", 125721)
combined_dataframe[18,4:5] = c("Sardinella aurita", 126422)
combined_dataframe[20,4:5] = c("Solea senegalensis", 127159)
combined_dataframe[21,4:5] = c("Solea vulgaris", 154712)
combined_dataframe[22,4:5] = c("Stephanolepis hispidus", 127409)
combined_dataframe[24,4:5] = c("Syngnathus typhle", 127393)
combined_dataframe[25,4:5] = c("Tilapia", 271096)
Locality data
Locality data was retrieved via georeferencing the included site maps from the paper. These maps have been saved as TIFs and points saved as a csv.
occ_data <- data.frame(
canonicalFull = character(),
wormsIDs = numeric(),
locality = character(),
fieldNumber = character(),
decimalLongitude = numeric(),
decimalLatitude = numeric(),
coordinateUncertaintyInMeters = numeric()
)
for (i in 1:nrow(combined_dataframe)) {
if (combined_dataframe[i, 2] != "") {
fieldNumber = "A"
locality = "Baie d'Aouatif, Arie flat"
decimalLatitude = "19.8839"
decimalLongitude = "-16.2790723"
coordinateUncertaintyInMeters = "50"
new_row <- data.frame(
canonicalFull = combined_dataframe[i, "CanonicalFull"],
wormsIDs = combined_dataframe[i, "WormsIDs"],
locality = locality,
fieldNumber = fieldNumber,
decimalLongitude = decimalLongitude,
decimalLatitude = decimalLatitude,
coordinateUncertaintyInMeters = coordinateUncertaintyInMeters)
occ_data <- rbind(occ_data, new_row)
}
if (combined_dataframe[i, 3] != ""){
fieldNumber = "F"
locality = "Baie d'Aouatif, Francesc flat"
decimalLatitude = "19.8765081"
decimalLongitude = "-16.2864898"
coordinateUncertaintyInMeters = "50"
new_row <- data.frame(
canonicalFull = combined_dataframe[i, "CanonicalFull"],
wormsIDs = combined_dataframe[i, "WormsIDs"],
locality = locality,
fieldNumber = fieldNumber,
decimalLongitude = decimalLongitude,
decimalLatitude = decimalLatitude,
coordinateUncertaintyInMeters = coordinateUncertaintyInMeters)
occ_data <- rbind(occ_data, new_row)
}
}
Darwin Core mapping
Required Terms
OBIS currently has eight required DwC terms: scientificName, scientificNameID, occurrenceID, eventDate, decimalLongitude, decimalLatitude, occurrenceStatus, basisOfRecord.
scientificName/scientificNameID
Create a dataframe with unique taxa only (though this should already be unique). This will be our primary DarwinCore data frame.
#rename and restructure WoRMSIDs to OBIS requirements
occurrence <- occ_data %>%
rename(scientificName = canonicalFull) %>%
rename(scientificNameID = wormsIDs) %>%
mutate(scientificNameID = ifelse(!is.na(scientificNameID), paste("urn:lsid:marinespecies.org:taxname:", scientificNameID, sep = ""), NA))
occurrenceID
OccurrenceID is an identifier for the occurrence record and should be persistent and globally unique. It is a combination of dataset-shortname:occurrence: and a hash based on the scientific name.
# Vectorize the digest function (The digest() function isn't vectorized. So if you pass in a vector, you get one value for the whole vector rather than a digest for each element of the vector):
vdigest <- Vectorize(digest)
# Generate taxonID:
occurrence %<>% mutate(occurrenceID = paste(short_name, "occurrence", vdigest (paste(scientificName, locality), algo="md5"), sep=":"))
eventDate
These specimens were collected between June 2003 - December 2003
decimalLongitude/decimalLatitude
Locality data was retrieved via georeferencing the included site maps from the paper. These maps have been saved as TIFs and points saved as a csv. First we will use obistools::calculate_centroid to calculate a centroid and radius for WKT strings. This is useful for populating decimalLongitude, decimalLatitude and coordinateUncertaintyInMeters. See above.
The calculations below are used to calculate the boundaries for the EML file.
if (!file.exists(paste(path_to_project_root, "scripts_data/marine_world_heritage.gpkg", sep="/"))) {
download.file("https://github.com/iobis/mwhs-shapes/blob/master/output/marine_world_heritage.gpkg?raw=true", paste(path_to_project_root, "scripts_data/marine_world_heritage.gpkg", sep="/"))
}
shapes <- st_read(paste(path_to_project_root, "scripts_data/marine_world_heritage.gpkg", sep="/"))
## Reading layer `marine_world_heritage' from data source
## `/mnt/c/Users/Chandra Earl/Desktop/Labs/UNESCO/mwhs-data-mobilization/scripts_data/marine_world_heritage.gpkg'
## using driver `GPKG'
## Simple feature collection with 60 features and 4 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -180 ymin: -55.32282 xmax: 180 ymax: 71.81381
## Geodetic CRS: 4326
Post-processing
Check data
Use the check_fields command from obistools to check if all OBIS required fields are present in an occurrence table and if any values are missing.
#Reorganize columns
occurrence = occurrence %>% select(occurrenceID, scientificName, scientificNameID, eventDate, country, locality, fieldNumber, decimalLatitude, decimalLongitude, coordinateUncertaintyInMeters, geodeticDatum, occurrenceStatus, basisOfRecord)
#Check fields
check_fields(occurrence)
## Warning: `data_frame()` was deprecated in tibble 1.1.0.
## ℹ Please use `tibble()` instead.
## ℹ The deprecated feature was likely used in the obistools package.
## Please report the issue to the authors.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## # A tibble: 0 × 0
Create the EML file
This is a file which contains the dataset’s metadata and is required in a DarwinCore-Archive.
## [1] "eml-2.1.1"
#Title
title <- "Banc d'Arguin a Nursery for fish species"
#AlternateIdentifier
alternateIdentifier <- paste("https://ipt.obis.org/secretariat/resource?r=", short_name, sep="")
#Abstract
abstract <- eml$abstract(
para = "In the period from 27-01-2002 until 18-03-2002 126 samples, totalling an area of 6139.58 m2, on different substrates (Zostera, Tidal pool, Sand, Gully Zostera and Gully Cvmodocea) were collected with a Beam trawl in the Baie d'Aouatif, located in the Parc National du Banc d'Arguin, Mauritania. This was done to test the hypothesis that the Banc d'Arguin has an ecological function as a nursery for juvenile fish. 347 individuals of 25 different species were caught, 2 of those species belonged to the class of Cephalopoda. Of the twenty-three fish species, those species belonging to the family of Gobiidae and the Sub-family Syngnathinae were the most common species."
)
People
Here we add the people involved in the project:
The creator is the person or organization responsible for creating the resource itself.
The contact is the person or institution to contact with questions about the use, interpretation of a data set.
The metadataProvider is the person responsible for providing the metadata documentation for the resource.
The associatedParty (in this case the Data Curator) is the person who mobilized the data from the original resource.
creator <- list(eml$creator(
individualName = eml$individualName(
givenName = "J.P.C.",
surName = "van Etten"),
organizationName = "Rijks Universiteit Groningen"
)
)
contact <- eml$creator(
individualName = eml$individualName(
givenName = "OBIS",
surName = "Secretariat"),
electronicMailAddress = "helpdesk@obis.org",
organizationName = "OBIS",
positionName = "Secretariat"
)
metadataProvider <- eml$metadataProvider(
individualName = eml$individualName(
givenName = "Chandra",
surName = "Earl"),
electronicMailAddress = "c.earl@unesco.org",
organizationName = "UNESCO",
positionName = "eDNA Scientific Officer"
)
associatedParty <- eml$associatedParty(
role = "processor",
individualName = eml$individualName(
givenName = "Chandra",
surName = "Earl"),
electronicMailAddress = "c.earl@unesco.org",
organizationName = "UNESCO",
positionName = "eDNA Scientific Officer"
)
Additional Metadata
Here we add the additionalMetadata element, which is required for a GBIF-type EML file and contains information such as the citation of the dataset, the citation of the original resource and the creation timestamp of the EML.
#{dataset.authors} ({dataset.pubDate}) {dataset.title}. [Version {dataset.version}]. {organization.title}. {dataset.type} Dataset {dataset.doi}, {dataset.url}
additionalMetadata <- eml$additionalMetadata(
metadata = list(
gbif = list(
dateStamp = paste0(format(Sys.time(), "%Y-%m-%dT%H:%M:%OS3"), paste0(substr(format(Sys.time(), "%z"), 1, 3), ":", paste0(substr(format(Sys.time(), "%z"), 4, 5)))),
hierarchyLevel = "dataset",
citation = "IPT will autogenerate this",
bibliography = list(
citation = "Etten, J.P.C van (2002) Bane d'Arguin a Nursery for fish species. Master's Thesis / Essay, Biology.")
)
)
)
citationdoi <- "https://fse.studenttheses.ub.rug.nl/id/eprint/9188"
Coverage
Here we describe the dataset’s geographic, taxonomic and temporal coverage.
#Coverage
coverage <- eml$coverage(
geographicCoverage = eml$geographicCoverage(
geographicDescription = "Banc d'Arguin National Park",
boundingCoordinates = eml$boundingCoordinates(
westBoundingCoordinate = st_bbox(ind_shape)$xmax,
eastBoundingCoordinate = st_bbox(ind_shape)$xmin,
northBoundingCoordinate = st_bbox(ind_shape)$ymax,
southBoundingCoordinate = st_bbox(ind_shape)$ymin)
),
taxonomicCoverage = eml$taxonomicCoverage(
generalTaxonomicCoverage = "Fishes",
taxonomicClassification = list(
eml$taxonomicClassification(
taxonRankName = "Superclass",
taxonRankValue = "Agnatha"),
eml$taxonomicClassification(
taxonRankName = "unranked",
taxonRankValue = "Chondrichthyes"),
eml$taxonomicClassification(
taxonRankName = "unranked",
taxonRankValue = "Osteichthyes")
)
),
temporalCoverage = eml$temporalCoverage(
rangeOfDates = eml$rangeOfDates(
beginDate = eml$beginDate(
calendarDate = "2002-01-27"
),
endDate = eml$endDate(
calendarDate = "2002-03-18"
)
)
)
)
Extra MetaData
These fields are not required, though they make the metadata more complete.
methods <- eml$methods(
methodStep = eml$methodStep(
description = eml$description(
para = paste("See Github <a href=\"https://github.com/iobis/mwhs-data-mobilization\">Project</a> and <a href=\"https://iobis.github.io/mwhs-data-mobilization/notebooks/", site_dir_name, "/", dataset_dir_name, "\"> R Notebook</a> for dataset construction methods", sep="")
)
)
)
#Other Data
pubDate <- "2023-10-15"
#language of original document
language <- "eng"
keywordSet <- eml$keywordSet(
keyword = "Occurrence",
keywordThesaurus = "GBIF Dataset Type Vocabulary: http://rs.gbif.org/vocabulary/gbif/dataset_type_2015-07-10.xml"
)
maintenance <- eml$maintenance(
description = eml$description(
para = ""),
maintenanceUpdateFrequency = "notPlanned"
)
#Universal CC
intellectualRights <- eml$intellectualRights(
para = "To the extent possible under law, the publisher has waived all rights to these data and has dedicated them to the <ulink url=\"http://creativecommons.org/publicdomain/zero/1.0/legalcode\"><citetitle>Public Domain (CC0 1.0)</citetitle></ulink>. Users may copy, modify, distribute and use the work, including for commercial purposes, without restriction."
)
purpose <- eml$purpose(
para = "These data were made accessible through UNESCO's eDNA Expeditions project to mobilize available marine species and occurrence datasets from World Heritage Sites."
)
additionalInfo <- eml$additionalInfo(
para = "marine, harvested by iOBIS"
)
Create and Validate EML
#Put it all together
my_eml <- eml$eml(
packageId = paste("https://ipt.obis.org/secretariat/resource?id=", short_name, "/v1.0", sep = ""),
system = "http://gbif.org",
scope = "system",
dataset = eml$dataset(
alternateIdentifier = alternateIdentifier,
title = title,
creator = creator,
metadataProvider = metadataProvider,
associatedParty = associatedParty,
pubDate = pubDate,
coverage = coverage,
language = language,
abstract = abstract,
keywordSet = keywordSet,
contact = contact,
methods = methods,
intellectualRights = intellectualRights,
purpose = purpose,
maintenance = maintenance,
additionalInfo = additionalInfo),
additionalMetadata = additionalMetadata
)
eml_validate(my_eml)
## [1] TRUE
## attr(,"errors")
## character(0)
Create meta.xml file
This is a file which describes the archive and data file structure and is required in a DarwinCore-Archive. It is based on the template file “meta_occurrence_checklist_template.xml”
meta_template <- paste(path_to_project_root, "scripts_data/meta_occurrence_occurrence_template.xml", sep="/")
meta <- read_xml(meta_template)
fields <- xml_find_all(meta, "//d1:field")
for (field in fields) {
term <- xml_attr(field, "term")
if (term == "http://rs.tdwg.org/dwc/terms/eventDate") {
xml_set_attr(field, "default", eventDate)
} else if (term == "http://rs.tdwg.org/dwc/terms/country") {
xml_set_attr(field, "default", country)
} else if (term == "http://rs.tdwg.org/dwc/terms/geodeticDatum") {
xml_set_attr(field, "default", geodeticDatum)
} else if (term == "http://rs.tdwg.org/dwc/terms/occurrenceStatus") {
xml_set_attr(field, "default", occurrenceStatus)
} else if (term == "http://rs.tdwg.org/dwc/terms/basisOfRecord") {
xml_set_attr(field, "default", basisOfRecord)
}
}
Save outputs
dwc_output_dir <- paste(path_to_project_root, "output", site_dir_name, dataset_dir_name, sep="/")
write.csv(occurrence, paste(dwc_output_dir, "/occurrence.csv", sep = ""), na = "", row.names=FALSE)
write_xml(meta, file = paste(dwc_output_dir, "/meta.xml", sep = ""))
write_eml(my_eml, paste(dwc_output_dir, "/eml.xml", sep = ""))
Edit EML
We have to further edit the eml file to conform to GBIF-specific requirements that cannot be included in the original EML construction. This includes changing the schemaLocation and rearranging the GBIF element, since the construction automatically arranges the children nodes to alphabetical order.
#edit the schemaLocation and rearrange gbif node for gbif specific eml file
eml_content <- read_xml(paste(dwc_output_dir, "/eml.xml", sep = ""))
#change schemaLocation attributes for GBIF
root_node <- xml_root(eml_content)
xml_set_attr(root_node, "xsi:schemaLocation", "https://eml.ecoinformatics.org/eml-2.1.1 http://rs.gbif.org/schema/eml-gbif-profile/1.2/eml.xsd")
xml_set_attr(root_node, "xmlns:dc", "http://purl.org/dc/terms/")
xml_set_attr(root_node, "xmlns:stmml", NULL)
xml_set_attr(root_node, "xml:lang", "eng")
#rearrange children nodes under the GBIF element
hierarchyLevel <- eml_content %>% xml_find_all(".//hierarchyLevel")
dateStamp <- eml_content %>% xml_find_all(".//dateStamp")
citation <- eml_content %>% xml_find_all("./additionalMetadata/metadata/gbif/citation")
bibcitation <- eml_content %>% xml_find_all("./additionalMetadata/metadata/gbif/bibliography/citation")
xml_set_attr(bibcitation, "identifier", citationdoi)
eml_content %>% xml_find_all(".//hierarchyLevel") %>% xml_remove()
eml_content %>% xml_find_all(".//dateStamp") %>% xml_remove()
eml_content %>% xml_find_all("./additionalMetadata/metadata/gbif/citation") %>% xml_remove()
eml_content %>% xml_find_all(".//gbif") %>% xml_add_child(citation, .where=0)
eml_content %>% xml_find_all(".//gbif") %>% xml_add_child(hierarchyLevel, .where=0)
eml_content %>% xml_find_all(".//gbif") %>% xml_add_child(dateStamp, .where=0)
write_xml(eml_content, paste(dwc_output_dir, "/eml.xml", sep = ""))