Bundling Glynn and Fong 2014 to a DwC Archive

This is an R Markdown Notebook for converting the species checklist found in the following reference to DarwinCore format for upload into OBIS as part of UNESCO’s eDNA Expeditions project:

Glynn, P., & Fong, P. (2014). Fish species counts in 3, 20x40 m transects, Panama, 1980-2010 (EPac Corals projects I-VII). Biological and Chemical Oceanography Data Management Office.

Setup

Call the necessary libraries and variables. Suppresses loading messages.

library(magrittr)                       # To use %<>% pipes
suppressMessages(library(janitor))      # To clean input data
suppressMessages(library(dplyr))        # To clean input data
library(stringr)                        # To clean input data
suppressMessages(library(rgnparser))    # To clean species names
suppressMessages(library(taxize))       # To get WoRMS IDs
library(worrms)                         # To get WoRMS IDs
library(digest)                         # To generate hashes
suppressMessages(library(obistools))    # To generate centroid lat/long and uncertainty
suppressMessages(library(sf))           # To generate wkt polygon
suppressMessages(library(EML))          # To create eml.xml file
library(xml2)                           # To create the meta.xml file
suppressMessages(library(zip))          # To zip DwC file
suppressMessages(library(tidyr))

Input Parameters and Paths

path_to_project_root <- "../../.."
site_dir_name <- "coiba_national_park_and_its_special_zone_of_marine_protection"
dataset_dir_name <- "Glynn_and_Fong_2014"
original_pdf <- ""
short_name <- "coiba-glynn-fong-2014"

Parsing PDF table to CSV

The data for this reference is formatted as an image-based table inside a PDF across multiple sheets. First, we use pdf_to_table to OCR and parse out the table to a CSV.

Read source data

Now we’ll read in the csv table outputted from the previous step

processed_csv <- "dataset-516234_fish-species-counts__v1.csv"

input_data <- read.csv(paste(path_to_project_root, "datasets", site_dir_name, dataset_dir_name, "raw", processed_csv, sep="/"))

#to preview pretty table
knitr::kable(head(input_data))
year transect lat_inner lon_inner lat_outer lon_outer day month season time_start time_end species_code species count
1980 1 7.81483 -81.75886 7.81490 -81.75907 13 1 DRY 1607 1613 ACA_XAN Acanthurus_xanthopterus 4
1980 1 7.81483 -81.75886 7.81490 -81.75907 13 1 DRY 1607 1613 SUF_VER Sufflamen_verres 8
1980 1 7.81483 -81.75886 7.81490 -81.75907 13 1 DRY 1607 1613 HOL_PAS Holacanthus_passer 4
1980 1 7.81483 -81.75886 7.81490 -81.75907 13 1 DRY 1607 1613 SCA_PER Scarus_perrico 1
1980 1 7.81483 -81.75886 7.81490 -81.75907 13 1 DRY 1607 1613 SCA_GHO Scarus_ghobban 1
1980 2 7.81471 -81.75889 7.81478 -81.75910 13 1 DRY 1643 1649 BOD_DIP Bodianus_diplotaenia 2

Preprocessing

Here we tidy the data up, since OCR and table parsing errors are common and only take the list of species, since this is a checklist.

Tidy Data

input_data %<>%
  remove_empty(c("rows", "cols")) %>%       # Remove empty rows and columns
  clean_names()

# Remove Classes, Families and Orders and take first column only
cleaned_data <- input_data %>%
     select(-c(transect, season, time_start, time_end, species_code))

#to preview pretty table
knitr::kable(head(cleaned_data))
year lat_inner lon_inner lat_outer lon_outer day month species count
1980 7.81483 -81.75886 7.81490 -81.75907 13 1 Acanthurus_xanthopterus 4
1980 7.81483 -81.75886 7.81490 -81.75907 13 1 Sufflamen_verres 8
1980 7.81483 -81.75886 7.81490 -81.75907 13 1 Holacanthus_passer 4
1980 7.81483 -81.75886 7.81490 -81.75907 13 1 Scarus_perrico 1
1980 7.81483 -81.75886 7.81490 -81.75907 13 1 Scarus_ghobban 1
1980 7.81471 -81.75889 7.81478 -81.75910 13 1 Bodianus_diplotaenia 2

Get WoRMS IDs

Auto matching

First we will try to do this automatically by first cleaning the species names using gnparser and then using the taxise library to call the WoRMS database.

#Parse author names out
parsed_names <- rgnparser::gn_parse(cleaned_data[,"species"])

#Function to get WoRMS IDs. Search for accepted names first and if not found, search for unaccepted. If still not found, use the worrms package to search.
get_worms_id_from_element <- function(element) {
  worms_id <- get_wormsid(element$canonical$full, searchtype="scientific", fuzzy=TRUE, messages = FALSE, accepted = TRUE)
  if (attr(worms_id, "match") == "not found") {
    worms_id <- get_wormsid(element$canonical$full, searchtype="scientific", messages = FALSE, fuzzy=TRUE)
    if (attr(worms_id, "match") == "not found") {
      worms_id <- NA
    }
  }
  return(worms_id)
}

#Call the function
worms_ids <- lapply(parsed_names, function(element) {
  if (element$parsed) {
    return(get_worms_id_from_element(element))
  } else {
    return(NA)
  }
})

#combine original names, parsed data and WoRMS ID into one data frame
combined_dataframe <- data.frame()

for (i in 1:nrow(cleaned_data)) {
  cleaned_value <- cleaned_data[i,]
  canonical_value <- parsed_names[[i]]$canonical$full
  worms_id_value <- worms_ids[[i]][1]
  if (is.null(canonical_value)){
    canonical_value <- NA
  }
  temp_row <- data.frame(CleanedData = cleaned_value, CanonicalFull = canonical_value, WormsIDs = worms_id_value)
  combined_dataframe <- rbind(combined_dataframe, temp_row)
}

knitr::kable(head(combined_dataframe))
CleanedData.year CleanedData.lat_inner CleanedData.lon_inner CleanedData.lat_outer CleanedData.lon_outer CleanedData.day CleanedData.month CleanedData.species CleanedData.count CanonicalFull WormsIDs
1980 7.81483 -81.75886 7.81490 -81.75907 13 1 Acanthurus_xanthopterus 4 Acanthurus xanthopterus 219634
1980 7.81483 -81.75886 7.81490 -81.75907 13 1 Sufflamen_verres 8 Sufflamen verres 276853
1980 7.81483 -81.75886 7.81490 -81.75907 13 1 Holacanthus_passer 4 Holacanthus passer 276016
1980 7.81483 -81.75886 7.81490 -81.75907 13 1 Scarus_perrico 1 Scarus perrico 276057
1980 7.81483 -81.75886 7.81490 -81.75907 13 1 Scarus_ghobban 1 Scarus ghobban 219127
1980 7.81471 -81.75889 7.81478 -81.75910 13 1 Bodianus_diplotaenia 2 Bodianus diplotaenia 273527

Human Verification

Sometimes there are misspellings in the original text or incorrect OCR that can be searched for and fixed by hand. To do this, view the combined dataframe, search for unmatched species in WoRMS and add the ID, and remove rows that were not autoremoved in the earlier cleaning steps

combined_dataframe[100,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[108,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[164,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[239,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[257,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[339,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[393,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[423,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[510,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[562,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[670,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[682,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[702,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[730,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[742,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[761,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[899,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[910,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[955,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[966,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[978,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1016,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1083,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1088,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1101,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1124,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1151,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1185,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1205,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1215,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1225,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1235,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1240,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1252,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1261,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1321,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1478,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1493,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1501,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1509,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1519,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1531,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1621,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1693,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1733,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1738,10:11] = c('Fistularia commersonii', 217966)
combined_dataframe[1249,10:11] = c('Haemulon maculicauda', 275729)
combined_dataframe[348,10:11] = c('Halichoeres nicholsoni', NA)
combined_dataframe[597,10:11] = c('Halichoeres nicholsoni', NA)
combined_dataframe[707,10:11] = c('Halichoeres nicholsoni', NA)
combined_dataframe[860,10:11] = c('Halichoeres nicholsoni', NA)
combined_dataframe[913,10:11] = c('Halichoeres nicholsoni', NA)
combined_dataframe[982,10:11] = c('Halichoeres nicholsoni', NA)
combined_dataframe[1265,10:11] = c('Halichoeres nicholsoni', NA)
combined_dataframe[1286,10:11] = c('Halichoeres nicholsoni', NA)
combined_dataframe[1296,10:11] = c('Halichoeres nicholsoni', NA)
combined_dataframe[1304,10:11] = c('Halichoeres nicholsoni', NA)
combined_dataframe[1316,10:11] = c('Halichoeres nicholsoni', NA)
combined_dataframe[1428,10:11] = c('Halichoeres nicholsoni', NA)
combined_dataframe[1784,10:11] = c('Halichoeres nicholsoni', NA)
combined_dataframe[111,10:11] = c('Kyphosus analogus', 273519)
combined_dataframe[120,10:11] = c('Kyphosus analogus', 273519)
combined_dataframe[1278,10:11] = c('Kyphosus analogus', 273519)


combined_dataframe <- combined_dataframe[-c(76),]

Darwin Core mapping

Required Terms

OBIS currently has eight required DwC terms: scientificName, scientificNameID, occurrenceID, eventDate, decimalLongitude, decimalLatitude, occurrenceStatus, basisOfRecord.

scientificName/scientificNameID

Create a dataframe with unique taxa only (though this should already be unique). This will be our primary DarwinCore data frame.

#rename and restructure WoRMSIDs to OBIS requirements
occurrence <- combined_dataframe %>%
  distinct(CanonicalFull, WormsIDs, CleanedData.count, CleanedData.day, CleanedData.month, CleanedData.year, CleanedData.lat_inner, CleanedData.lon_inner, CleanedData.lat_outer, CleanedData.lon_outer) %>%
  rename(scientificName = CanonicalFull) %>%
  rename(scientificNameID = WormsIDs) %>%
  mutate(scientificNameID = ifelse(!is.na(scientificNameID), paste("urn:lsid:marinespecies.org:taxname:", scientificNameID, sep = ""), NA))

eventDate

This is NULL since this is technically a checklist and we do not know the collection date.

occurrence$eventDate <- sprintf('%04d-%02d-%02d', occurrence$CleanedData.year, occurrence$CleanedData.month, occurrence$CleanedData.day)
occurrence <- occurrence %>%
  select(, -c(CleanedData.year, CleanedData.day, CleanedData.month))

occurrenceID

OccurrenceID is an identifier for the occurrence record and should be persistent and globally unique. It is a combination of dataset-shortname:occurrence: and a hash based on the scientific name.

# Vectorize the digest function (The digest() function isn't vectorized. So if you pass in a vector, you get one value for the whole vector rather than a digest for each element of the vector):
vdigest <- Vectorize(digest)

# Generate taxonID:
occurrence %<>% mutate(occurrenceID = paste(short_name, "occurrence", vdigest (paste(scientificName, eventDate, CleanedData.lat_inner, CleanedData.lon_inner, CleanedData.count), algo="md5"), sep=":"))

decimalLongitude/decimalLatitude

Use obistools::calculate_centroid to calculate a centroid and radius for WKT strings. This is useful for populating decimalLongitude, decimalLatitude and coordinateUncertaintyInMeters. The WKT strings are from https://github.com/iobis/mwhs-shapes.

coordinates <- data.frame(lon_inner = occurrence$CleanedData.lon_inner, lat_inner = occurrence$CleanedData.lat_inner, 
                          lon_outer = occurrence$CleanedData.lon_outer, lat_outer = occurrence$CleanedData.lat_outer)

coordinates$wkt_string <- paste("MULTIPOINT ((", coordinates$lon_inner, " ", coordinates$lat_inner, "), (", coordinates$lon_outer, " ", coordinates$lat_outer, "))", sep="")
    
#set uncertainty to ~200 meters for those with just one point
coordinates <- coordinates %>%
  rowwise() %>%
  mutate(centroids = list(calculate_centroid(wkt_string))) %>%
  unnest(centroids)

occurrence %<>% mutate(decimalLongitude = coordinates$decimalLongitude)
occurrence %<>% mutate(decimalLatitude = coordinates$decimalLatitude)
occurrence %<>% mutate(coordinateUncertaintyInMeters = coordinates$coordinateUncertaintyInMeters)

occurrence <- occurrence %>%
  select(, -c(CleanedData.lat_inner, CleanedData.lon_inner, CleanedData.lat_outer, CleanedData.lon_outer))

occurrenceStatus

occurrenceStatus <- "present"
occurrence %<>% mutate(occurrenceStatus)

basisOfRecord

basisOfRecord <- "HumanObservation"
occurrence %<>% mutate(basisOfRecord)

Extra Terms

individualCount

occurrence <- occurrence %>%
  rename(individualCount = CleanedData.count)

coordinateUncertaintyInMeters

geodeticDatum

geodeticDatum <- "WGS84"
occurrence %<>% mutate(geodeticDatum)

country

country <- "Panama"
occurrence %<>% mutate(country)

locality

locality <- "Coiba National Park"
occurrence %<>% mutate(locality)

Post-processing

Check data

Use the check_fields command from obistools to check if all OBIS required fields are present in an occurrence table and if any values are missing.

#Reorganize columns
occurrence = occurrence %>% select(occurrenceID, scientificName, scientificNameID, eventDate, country, locality, individualCount, decimalLatitude, decimalLongitude, coordinateUncertaintyInMeters, geodeticDatum, occurrenceStatus, basisOfRecord)

#Check fields
check_fields(occurrence)
## Warning: `data_frame()` was deprecated in tibble 1.1.0.
## ℹ Please use `tibble()` instead.
## ℹ The deprecated feature was likely used in the obistools package.
##   Please report the issue to the authors.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## # A tibble: 13 × 4
##    level field              row message                                        
##    <chr> <chr>            <int> <chr>                                          
##  1 error scientificNameID   347 Empty value for required field scientificNameID
##  2 error scientificNameID   592 Empty value for required field scientificNameID
##  3 error scientificNameID   702 Empty value for required field scientificNameID
##  4 error scientificNameID   853 Empty value for required field scientificNameID
##  5 error scientificNameID   905 Empty value for required field scientificNameID
##  6 error scientificNameID   970 Empty value for required field scientificNameID
##  7 error scientificNameID  1248 Empty value for required field scientificNameID
##  8 error scientificNameID  1269 Empty value for required field scientificNameID
##  9 error scientificNameID  1279 Empty value for required field scientificNameID
## 10 error scientificNameID  1287 Empty value for required field scientificNameID
## 11 error scientificNameID  1299 Empty value for required field scientificNameID
## 12 error scientificNameID  1407 Empty value for required field scientificNameID
## 13 error scientificNameID  1761 Empty value for required field scientificNameID

Create the EML file

This is a file which contains the dataset’s metadata and is required in a DarwinCore-Archive.

emld::eml_version("eml-2.1.1")
## [1] "eml-2.1.1"
#Title
title <- "Fish species counts in 3, 20x40 m transects, Panama, 1980-2010"

#AlternateIdentifier
alternateIdentifier <- paste("https://ipt.obis.org/secretariat/resource?r=", short_name, sep="")

#Abstract
abstract <- eml$abstract(
  para = "This dataset present fish species counts in three 20x40 m transects. The surveys were conducted at the Uva Island coral reef (7o48’46”N, 81o45’35”W), Gulf of Chiriquí, Panama from 1980 to 2010 during both the wet and dry seasons. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/516234"
)

People

Here we add the people involved in the project:

The creator is the person or organization responsible for creating the resource itself.

The contact is the person or institution to contact with questions about the use, interpretation of a data set.

The metadataProvider is the person responsible for providing the metadata documentation for the resource.

The associatedParty (in this case the Data Curator) is the person who mobilized the data from the original resource.

creator <- list(eml$creator(
    individualName = eml$individualName(
      givenName = "Peter", 
      surName = "Glynn")
  ), eml$creator(
    individualName = eml$individualName(
      givenName = "Peggy", 
      surName = "Fong")
  )
)


contact <- eml$creator(
  individualName = eml$individualName(
    givenName = "OBIS", 
    surName = "Secretariat"),
  electronicMailAddress = "helpdesk@obis.org",
  organizationName = "OBIS",
  positionName = "Secretariat"
)

metadataProvider <- eml$metadataProvider(
  individualName = eml$individualName(
    givenName = "Chandra", 
    surName = "Earl"),
  electronicMailAddress = "c.earl@unesco.org",
  organizationName = "UNESCO",
  positionName = "eDNA Scientific Officer"
)

associatedParty <- eml$associatedParty(
  role = "processor",
  individualName = eml$individualName(
    givenName = "Chandra", 
    surName = "Earl"),
  electronicMailAddress = "c.earl@unesco.org",
  organizationName = "UNESCO",
  positionName = "eDNA Scientific Officer"
)

Additional Metadata

Here we add the additionalMetadata element, which is required for a GBIF-type EML file and contains information such as the citation of the dataset, the citation of the original resource and the creation timestamp of the EML.

#{dataset.authors} ({dataset.pubDate}) {dataset.title}. [Version {dataset.version}]. {organization.title}. {dataset.type} Dataset {dataset.doi}, {dataset.url}

additionalMetadata <- eml$additionalMetadata(
  metadata = list(
    gbif = list(
      dateStamp = paste0(format(Sys.time(), "%Y-%m-%dT%H:%M:%OS3"), paste0(substr(format(Sys.time(), "%z"), 1, 3), ":", paste0(substr(format(Sys.time(), "%z"), 4, 5)))),
      hierarchyLevel = "dataset",
      citation = "IPT will autogenerate this",
      bibliography = list(
        citation = "Glynn, P., & Fong, P. (2014). Fish species counts in 3, 20x40 m transects, Panama, 1980-2010 (EPac Corals projects I-VII). Biological and Chemical Oceanography Data Management Office.")
    )
  )
)

citationdoi <- "https://doi.org/10.1575/1912/bco-dmo.516234.1"

Coverage

Here we describe the dataset’s geographic, taxonomic and temporal coverage.

#Coverage
coverage <- eml$coverage(
  geographicCoverage = eml$geographicCoverage(
    geographicDescription = "Coiba National Park",
    boundingCoordinates = eml$boundingCoordinates(
      westBoundingCoordinate = min(occurrence$decimalLongitude),
      eastBoundingCoordinate = max(occurrence$decimalLongitude),
      northBoundingCoordinate = max(occurrence$decimalLatitude),
      southBoundingCoordinate = min(occurrence$decimalLatitude))
    ),
  taxonomicCoverage = eml$taxonomicCoverage(
    generalTaxonomicCoverage = "Fishes",
    taxonomicClassification = list(
      eml$taxonomicClassification(
        taxonRankName = "Superclass",
        taxonRankValue = "Agnatha"),
      eml$taxonomicClassification(
        taxonRankName = "unranked",
        taxonRankValue = "Chondrichthyes"),
      eml$taxonomicClassification(
        taxonRankName = "unranked",
        taxonRankValue = "Osteichthyes")
      )
    
#  ),
#  temporalCoverage = eml$temporalCoverage(
#    rangeOfDates = eml$rangeOfDates(
#      beginDate = eml$beginDate(
#        calendarDate = "2019-05-01"
#      ),
#      endDate = eml$endDate(
#        calendarDate = "2016-05-06"
#      )
#    )
   )
)

Extra MetaData

These fields are not required, though they make the metadata more complete.

methods <- eml$methods(
  methodStep = eml$methodStep(
    description = eml$description(
      para = paste("See Github <a href=\"https://github.com/iobis/mwhs-data-mobilization\">Project</a> and <a href=\"https://iobis.github.io/mwhs-data-mobilization/notebooks/", site_dir_name, "/", dataset_dir_name, "\"> R Notebook</a> for dataset construction methods", sep="")
    )
  )
)

#Other Data
pubDate <- "2023-10-15"

#language of original document
language <- "eng"

keywordSet <- eml$keywordSet(
  keyword = "Occurrence",
  keywordThesaurus = "GBIF Dataset Type Vocabulary: http://rs.gbif.org/vocabulary/gbif/dataset_type_2015-07-10.xml"
)

maintenance <- eml$maintenance(
  description = eml$description(
    para = ""),
  maintenanceUpdateFrequency = "notPlanned"
)

#Universal CC
intellectualRights <- eml$intellectualRights(
  para = "To the extent possible under law, the publisher has waived all rights to these data and has dedicated them to the <ulink url=\"http://creativecommons.org/publicdomain/zero/1.0/legalcode\"><citetitle>Public Domain (CC0 1.0)</citetitle></ulink>. Users may copy, modify, distribute and use the work, including for commercial purposes, without restriction."
)


purpose <- eml$purpose(
  para = "These data were made accessible through UNESCO's eDNA Expeditions project to mobilize available marine species and occurrence datasets from World Heritage Sites."
)

additionalInfo <- eml$additionalInfo(
  para = "marine, harvested by iOBIS"
)

Create and Validate EML

#Put it all together
my_eml <- eml$eml(
           packageId = paste("https://ipt.obis.org/secretariat/resource?id=", short_name, "/v1.0", sep = ""),  
           system = "http://gbif.org",
           scope = "system",
           dataset = eml$dataset(
               alternateIdentifier = alternateIdentifier,
               title = title,
               creator = creator,
               metadataProvider = metadataProvider,
               associatedParty = associatedParty,
               pubDate = pubDate,
               coverage = coverage,
               language = language,
               abstract = abstract,
               keywordSet = keywordSet,
               contact = contact,
               methods = methods,
               intellectualRights = intellectualRights,
               purpose = purpose,
               maintenance = maintenance,
               additionalInfo = additionalInfo),
           additionalMetadata = additionalMetadata
)

eml_validate(my_eml)
## [1] TRUE
## attr(,"errors")
## character(0)

Create meta.xml file

This is a file which describes the archive and data file structure and is required in a DarwinCore-Archive. It is based on the template file “meta_occurrence_checklist_template.xml”

meta_template <- paste(path_to_project_root, "scripts_data/meta_occurrence_occurrence_template.xml", sep="/")
meta <- read_xml(meta_template)

fields <- xml_find_all(meta, "//d1:field")

for (field in fields) {
  term <- xml_attr(field, "term")
  if (term == "http://rs.tdwg.org/dwc/terms/country") {
    xml_set_attr(field, "default", country)
  } else if (term == "http://rs.tdwg.org/dwc/terms/locality") {
    xml_set_attr(field, "default", locality)
    xml_set_attr(field, "index", NULL)
  } else if (term == "http://rs.tdwg.org/dwc/terms/geodeticDatum") {
    xml_set_attr(field, "default", geodeticDatum)
  } else if (term == "http://rs.tdwg.org/dwc/terms/occurrenceStatus") {
    xml_set_attr(field, "default", occurrenceStatus)
  } else if (term == "http://rs.tdwg.org/dwc/terms/basisOfRecord") {
    xml_set_attr(field, "default", basisOfRecord)
  } else if (term == "http://rs.tdwg.org/dwc/terms/eventDate") {
    xml_set_attr(field, "index", 3)
    xml_set_attr(field, "default", NULL)
  } else if (term == "http://rs.tdwg.org/dwc/terms/fieldNumber"){
    xml_set_attr(field, "term", "http://rs.tdwg.org/dwc/terms/individualCount")
  }
}

Save outputs

dwc_output_dir <- paste(path_to_project_root, "output", site_dir_name, dataset_dir_name, sep="/")

write.csv(occurrence, paste(dwc_output_dir, "/occurrence.csv", sep = ""), na = "", row.names=FALSE)
write_xml(meta, file = paste(dwc_output_dir, "/meta.xml", sep = ""))
write_eml(my_eml, paste(dwc_output_dir, "/eml.xml", sep = ""))

Edit EML

We have to further edit the eml file to conform to GBIF-specific requirements that cannot be included in the original EML construction. This includes changing the schemaLocation and rearranging the GBIF element, since the construction automatically arranges the children nodes to alphabetical order.

#edit the schemaLocation and rearrange gbif node for gbif specific eml file
eml_content <- read_xml(paste(dwc_output_dir, "/eml.xml", sep = ""))

#change schemaLocation attributes for GBIF
root_node <- xml_root(eml_content)
xml_set_attr(root_node, "xsi:schemaLocation", "https://eml.ecoinformatics.org/eml-2.1.1 http://rs.gbif.org/schema/eml-gbif-profile/1.2/eml.xsd")
xml_set_attr(root_node, "xmlns:dc", "http://purl.org/dc/terms/")
xml_set_attr(root_node, "xmlns:stmml", NULL)
xml_set_attr(root_node, "xml:lang", "eng")


#rearrange children nodes under the GBIF element
hierarchyLevel <- eml_content %>% xml_find_all(".//hierarchyLevel")
dateStamp <- eml_content %>% xml_find_all(".//dateStamp")
citation <- eml_content %>% xml_find_all("./additionalMetadata/metadata/gbif/citation")
bibcitation <- eml_content %>% xml_find_all("./additionalMetadata/metadata/gbif/bibliography/citation")
xml_set_attr(bibcitation, "identifier", citationdoi)

eml_content %>% xml_find_all(".//hierarchyLevel") %>% xml_remove()
eml_content %>% xml_find_all(".//dateStamp") %>% xml_remove()
eml_content %>% xml_find_all("./additionalMetadata/metadata/gbif/citation") %>% xml_remove()
eml_content %>% xml_find_all(".//gbif") %>% xml_add_child(citation, .where=0)
eml_content %>% xml_find_all(".//gbif") %>% xml_add_child(hierarchyLevel, .where=0)
eml_content %>% xml_find_all(".//gbif") %>% xml_add_child(dateStamp, .where=0)

write_xml(eml_content, paste(dwc_output_dir, "/eml.xml", sep = ""))

Zip files to DwC-A

output_zip <- paste(dwc_output_dir, "DwC-A.zip", sep="/")

if (file.exists(output_zip)) {
  unlink(output_zip)
}

file_paths <- list.files(dwc_output_dir, full.names = TRUE)
zip(zipfile = output_zip, files = file_paths, mode = "cherry-pick")

if (file.exists(output_zip)) {
  unlink(file_paths)
}